Un problema de urnas y bolas

En una urna A tenemos 2 bolas blancas y 3 bolas negras. En una urna B tenemos 3 bolas blancas y 4 negras. Pasamos una bola de A a B sin mirar de qué color es y, después, una de B a A también sin mirar. Posteriormente se extrae una bola de A. Calcular la probabilidad de que la bola que hemos pasado primero de A a B sea negra si sabemos que la bola que hemos extraído al final de A ha sido negra.

Solución:

Como siempre un problema de probabilidades es muy conveniente dibujarlo. Es recomendable ver el fichero Teorema de las probabilidades totales y Teorema de Bayes.

Veamos cómo se dibujaría este problema:

IMG_0693

Y si aplicamos los dos teoremas tenemos el siguiente resultado:

IMG_0694

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s